a2 United States Patent

Lee et al.

US009177146B1

(10) Patent No.: US 9,177,146 B1
(45) Date of Patent: Nov. 3, 2015

(54) LAYOUT SCANNER FOR APPLICATION
CLASSIFICATION

(75) Inventors: Wen-Chih Lee, Taipei (TW);
Ming-Chang Shih, Taipei (TW);
Wei-Chung Chou, New Taipei (TW)
(73) Assignee: Trend Micro, Inc., Tokyo (JP)

*) Notice: Subject to any disclaimer, the term of this
] y
patent is extended or adjusted under 35
U.S.C. 154(b) by 399 days.

(21) Appl. No.: 13/270,965
(22) Filed: Oect. 11,2011

(51) Int.CL

GOGF 21/56 (2013.01)
(52) US.CL
() G GOGF 21/566 (2013.01)

(58) Field of Classification Search
CPC ... GOG6F 21/52-21/54; GOGF 21/56-21/567,
GOG6F 21/577; GOG6F 3/0481-3/0483; GO6F
2221/033
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

8,776,227 B1* 7/2014 Glicketal.c.cce. 726/23
2002/0122065 Al* 9/2002 Segaletal. 345/783

2009/0165136 Al* 6/2009 Obrechtetal. 726/24
2012/0159620 Al* 6/2012 Seifertetal. 726/22
2012/0233163 Al* 9/2012 Kirkpatrick 707737
2013/0019310 Al1* 1/2013 Ben-Itzhak et al. 726/23

Acquire
Unknown
Sample

OTHER PUBLICATIONS

Proc. of the 13th Intl. Conf. on Pattern Recognition, vol. III, pp.
114-119, Vienna, Austria, Aug. 1996; Pictorial Queries by Image
Similarity; Aya Soffer et al.; year 1996.*

Building a Malware Zoo; GIAC (GREM) Gold Certification; Author
Joel Yonts; Advisor Pedro Bueno, dated Dec. 31, 1999.*

Query by Image and Video Content: The QBIC System; Myron
Flickner et al., IEEE, Sep. 1995.*

* cited by examiner

Primary Examiner — Ashok Patel
Assistant Examiner — Kevin Bechtel
(74) Attorney, Agent, or Firm — Beyer Law Group LLP

(57) ABSTRACT

A database of known graphical user interface layouts is gen-
erated using samples of known executable files. An execut-
able file having an unknown function is obtained; it is
executed within a safe environment and its graphical user
interface is identified. Layout analysis enumerates all of the
windows within the interface and extracts the position values
of each window and the dimension values of each window to
form a set of layout information. If the layout database con-
tains this layout information set then it is determined that the
layout information is of the same type of software corre-
sponding to the type of software contained within the data-
base (or of the type of software to which the layout informa-
tion is matched within the database). A match may occur if all
the windows match, if only some percentage of the windows
match, or if the windows do not match exactly but the dimen-
sions of the corresponding window in the database are within
a certain percentage.

10 Claims, 9 Drawing Sheets

50

53

[

Classify as Known

l White list
Sample 02 - Software Type
l NO
Launchthe Sampleand | 54 END
Target its GUI
Use Layout Analyzer to 58
Extract the GUP's Layout |
82 70
Check if Layout Database YES s Match Over
ntains this Layout Informatio Threshold?
NO
66 YES

NO j

No Classification

/

Output Classification
74| According to
Classification of
Matched Sample

U.S. Patent

Nov. 3, 2015

100 ’\

Sheet 1 of 9

US 9,177,146 B1

@ Antivirus 2009

=BX

Antivirus 2009
Stay protected from the latest threats

@ Registration

@ Help

Antivirus 2009: System scan
(] (3 System Sean) !
T Type Run Type Name Detalls ~ \
[W Security) ©Spyware C.ilwindowsfsyste. Spyware Diensterd Stgels passwords fiom..|
- OAdware |a_utorun lob PotAdveriser ba Aduave that displays.
110 [,E_.,; Privac } & Spyware autonin [Spyware. MMorior orogram thal can be...
< y & Backdoor IC:Ilwindows/syste... [Win32 Rbat fm A SRC controfied had.
73 ®Trojan autorun Infosiealer Banker £ [Steals senshive inos..
(Z) Update) ©QDialer [C-lwindowsfsyste. Diler Xpeibambiz Gier |ADiaer that loads por.
: O Spyware Jautorun SoywareKnownSites [Uses e Windous 10.. 130
[gSEtilngS)| [@Twgan auforun TrolanTooso 192N Tooss s oy,
\ ®Toan C-lwindowslsyste..{Trojair. MallGrabber s [Trojan horse ol get.
@ Trojan C.ilwindowsfsyste. | Trojan.alt.t £0jan program et c...
©ORoque CProgram FlesTTrst, |TrustedAntivirus corrupt and mislead.
Roque G.iProgram FllesfSecur. [SecuraPCCleaner Rogue Secury Sofwar.|
@ Tiojan Cilwvindowsfsyste. [Trojan BAT Adduser.t [This Trojan fas a mahw [~]]
< 2
(XJScan progress
Seanning: (OONOOOONANOOOOno00n) (Sio) 150
Cet il readfire protecionwith || [Path: Imputy.exe
Bafivirus 2009 Infections found: 20 140 Save Reoot
FIG. 1
200 "\
& Antivirus 2008 =aX

Antivirus 2008
N Protect your PC

D

@ Registration

@ Support

Antivirus 2008: System scan
(F5ystem Sean)
Y Type Run Typs Vendor Details ~
[“7 Security } OTwojan CProgram Filest_[Trojan-Downloader.... |This Trojan progr..
" OTrojan C:Program Filest [Trolan-Downloader.... [This Trojan is des.
[IIE Privacy) @ Spyware autorun rojan-Spy Win32... [This Trojan will st
OTrojan CProgram Filest [Trojan-Downloader.... [This Trojan down.
73 STrojan autorun [Trojan-Dropper Win... [This Trojan is des,
[Z) Update | [SBackdor CTWINDOWSL _ [Backdoor.Agobot.gen |Thisis a classical.
. @Troian CIWNEOWSDRy.. [Trolan-OWWin32.. [This Trojan is des.
[ﬁ Setlings || [@Twan CPaogran FlesiCo., [Trolan-Downloader.... [This Trojan down.
j (R [rojan-Downloader.... [This program is us|
OTrojan G.Pogram Flesir.. [Trolan-Clickes Wind... |This Trojan opens)
| ©Trojan CiPogiam Pl [Trojan-Downloader. . [This program is us
| ©Trojan CINNEOWSConn.._[Trojan-Downloader.... [This Trojan down.
] ¥
(¥JStan progress b
Scanning: ((ODOOOO 1 Stop] LBE@E.J
Getful eaddme prolectionwdh || |Path: CAWINDOWSIHelplident hlp
Pfivirus 2008 Infections found: 12 (] Save Regar

FIG. 2

U.S. Patent

300 ’\

Nov. 3, 2015 Sheet 2 of 9 US 9,177,146 B1
& Anti-Virus-1 EBIX
Anti-Virus-1 Registrati
egistration Hel
/@;Stay protected from the latest threats @ gs @ P
Antivirus 2009; System scan
(3ystem Sean)
Type Run Type | Name Detalls ~
(—QB Security] © Spyware C:Jhwindows/syste...|Spyware Ditonster & Steals passwords ons.
- OAdware autorun 71ch PotAdyeriser.ha Adera that displays,
[[E Privacy] O Spyware autorun [Soyware MMonitor progeam thal cai be...
© Backdoor [C.ffwindows/syste._[Wir2 Rutin &) 5RC controled bad, |
737 @ Tojan fautorun Infostealer Renker £ Steals sensifve infor.
[Z)deate] ODialer [C:/hvindows/syste..[Deier Xoalbam.biz diafer | Disler el loads por...
— O Spyware [autorun SpywareKnownSites [Uses the Windows ho..
[ﬁaettmgs) @ Trojan [autoren Troian. Tooso oian Toosg 2 1oy,
@ Trojan C./hwindows/syste. [Trofain MailGrabber.s {Troian borse hat gel.
@®Toan C.iwindows/syste. | Trojan.alt 4 foian program tha can.
©ORogue C:/Program FlasTrust. [TrustedAntivitus A comupt and misteat...
©ORogue (.[iProgram FlesSecur.. [SacurePCCleaner Rogue Securly Software
@ Trojan IC:/iwindowsfsyste..|Trojan BAT Adduser.t | This Trojan has a maby..
O Spyware IC:(/Windows/svste\..Spyware.WSpySostware Progam desiner .
®Trojan Ic:/windowsthidde..Trofan Clicker £C Troian Clicker EC s [
<] D
(X/5can progross
Scanning: { }{ Scan Now | Remove
Get full reac-tme protecionwth || [Path
Antivis-1 Infections found: 41 Saie Repor

FIG. 3

U.S. Patent Nov. 3, 2015 Sheet 3 of 9 US 9,177,146 B1

400
_\

-
(98]
(o]

{
H
H
{
i
H
H
{
H
i
{
H
H
H
H
{
{
{
{
{

...........................

(<12,6><36,18>) 510

521 /‘ |

U.S. Patent Nov. 3, 2015 Sheet 4 of 9

600 ’\

US 9,177,146 B1

& Walcome fo Antispyware

-

Home

e

Settings | Cuarantined ist] Ignore fist

@) AntiSpyware

610
[START SCAN 620

Scan your PC for hidden Adware/Spyware

System Status:

Last updated: 4.0.3155.909
Varsion: 10.8.8
Total no. of scans. §
Last scan time and result: <No scans>

¥ Resst Statisics = Register Now!

630
(Ufies)\ /—

(Quick Links \

@ Quarantined List

)

(© ignore List

BHO Full Registry AddRemove
Manager Backup Prog. Mngr.

Startup. Prog. Home Page Scan
Manager Manager Scheduler («-‘D Live Updatos

)

FIG. 6
700 T

710

Seftings Quarantined list Ignore list

21=1X

- @ @f? * % % DMalwareRemos\%l
© Home can

SPYWARE, ADWARE & VIRUSES

[» Scan & Remove Malware, Spyware, & Unwanted Scoftware from your PC!

STARTSCAN 720 '"D))
Scan your PC for hidden Maiware/Spyware

System Status:

Last updated: 1.8.3152.985
Version: 10.8.2
Total no. of scans; 0
Last scan time and result; <No scans>

@ Reset Statistics =D Regjstar Now!

730
Utilities:)/

Quick Links

BHO FuH Reglstry Add/Remove
Manager Backup Prog. Mngr.

(Quarantined List

Ignore List

8
[Startup ng) { Home Page] [Scan } (

Manager Manager Scheduler (" Live Updates

FIG. 7

U.S. Patent Nov. 3, 2015 Sheet 5 of 9 US 9,177,146 B1

/810 / 800

v —
0| | H
820
L 1
[|
[I l |
830
/’——ik——ﬁ
I
L |
E—

FIG. 8

U.S. Patent Nov. 3, 2015 Sheet 6 of 9 US 9,177,146 B1

Acquire
FakeAV ~—
Sample

'

Launch the Sample and Target its 14
GUI

l

Use Layout Analyzer to Extract the 18
GUl's Layout

10

22

Check if Layout Database
ontains this Layout Informatio

Add to Layout Database and Create 26
Pattern Automatically

END -

FIG. 9

U.S. Patent Nov. 3, 2015 Sheet 7 of 9 US 9,177,146 B1

852
(<6,6>, <12,14>) (
(<16,18>, <24,34>) N,
(<26,30>, <44,68>) A
(<36,42>, <61,75>) °
______ T '
844
856
S
840
(<6,6>, <12,14>)
(<16,18>, <24,34>) S Pattern
(<26,30>, <44,68>) 0
(<36,42>, <61,75>) ~ >
------ \ 844

FIG. 11

U.S. Patent Nov. 3, 2015 Sheet 8 of 9 US 9,177,146 B1

Acquire
Unknown 50
Sample
' 53
52 f
YES ;
Sample on White list »| Classify as Known
” Software Type
l NO
Launch the Sampleand | 54 END
Target its GUI
Use Layout Analyzerto | 58
Extract the GUI's Layout
62 f 70
Check if Layout Database YES Is Match Over
ontains this Layout Informatio Threshold?
NO
YE
NO f 66 S
Qutput Classification
No Classification LN According to
Classification of

Matched Sample

END //

FIG. 12

U.S. Patent

Nov. 3, 2015 Sheet 9 of 9 US 9,177,146 B1
906 /—- 900
914
el
s}
po———]
i,
)
/« aco
/922 /924 /926 K914
PROCESSOR(S) MEMORY FIXED DISK REME())I\S/QBLE
Y A Y A
920
< Y h 4 h 4 // »
< ry r \ 7§ 2 7y »
904 10 912 930 940
Y / ¥ / ¥ / 4 / y /
NETWORK
DISPLAY KEYBOARD MOUSE SPEAKERS INTEREACE

FIG. 13B

US 9,177,146 B1

1
LAYOUT SCANNER FOR APPLICATION
CLASSIFICATION

FIELD OF THE INVENTION

The present invention relates generally to classification of
software applications based upon layout of the user interface.
More specifically, the present invention relates to detection of
fake anti-virus software programs based upon layout of the
user interface.

BACKGROUND OF THE INVENTION

In recent years, with the growth of malicious software and
corresponding efforts to combat this malicious software with
antivirus software, a new type of malicious software has
emerged. This malicious software masquerades as real anti-
virus software and is often referred to as fake antivirus soft-
ware, as rogue software or as “scareware.”

This fake antivirus software sometimes tricks a computer
user into thinking that real antivirus software is present on his
or her computer and that hitherto unknown malicious soft-
ware has been detected by the fake software. The fake soft-
ware may then deceive the user into purchasing an improved
version of the fake software, into paying for the removal of
malicious software which does not exist and will not be
removed, or into installing other malicious software. Fake
antivirus software has become a growing and very serious
security issue with desktop computing in general.

The fake antivirus software usually relies upon some type
of'trick in order to get around installed antivirus software and
to install itself onto the user’s computer. For example, a
malicious Web site may display a fictitious warning that the
computer has been infected and encourage the user to pur-
chase or install other fake software. Or, a user may be misled
into installing a Trojan through a browser plug-in, through an
attachment to an e-mail message, via shared software, via
infected URLs in a search result, or via a fictitious online
malware scanning service. Some fake antivirus software may
not require any user action and instead installs itself via a
download that exploits security vulnerabilities in the user’s
computer software.

The fake software usually has a professional-quality
graphical user interface through which they convince users to
connect to a bogus Web site in order to purchase or upgrade
fake software, pay a fee, install more software, or generally
take an action that is not necessary and is usually detrimental
to the computer or its user. A hacker can steal a user’s credit
card or other confidential information via the purchase or
transaction.

It can be difficult to detect and remove such fake antivirus
software. A traditional file scanner is used to detect malicious
software in general, but such a file scanner may not be able to
detect fake antivirus software. The fake software uses a cus-
tomized packer and may use polymorphism. Further, it may
also add trash information to its file contents, all to avoid
detection by a traditional signature-based file scanner. A
behavior monitor of antivirus software also may have diffi-
culty in detecting fake antivirus software. Because the behav-
ior of fake antivirus software can be very similar to that of a
normal software application the behavior monitor may not be
able to detect the fake software. For example, the fake soft-
ware may simply present a pleasant-looking graphical user
interface that convinces the user to connect to a malicious
Web site in order to purchase the fake software.

Furthermore, the fake software may change its contents,
file name, installed path, installed registries, resource icon, or

10

15

20

25

30

35

40

45

50

55

60

65

2

connected Web site URL, all in order to prevent detection by
traditional file scanning or behavior monitoring. Due to these
tricks and the potential similarity between fake antivirus soft-
ware and a normal application, it can be very difficult to
identify the fake software.

For these reasons, it is believed that current scanning and
monitoring techniques can be improved in order to detect and
classify software applications, and to remove fake antivirus
software in particular. Accordingly, new techniques are
desired.

SUMMARY OF THE INVENTION

To achieve the foregoing, and in accordance with the pur-
pose of the present invention, a layout scanner is disclosed
that is able to classify software based upon its graphical user
interface.

The technique uses a window-based approach in order to
enumerate all windows in a user interface and create a layout
signature. Such a layout is typically a good signature for a
software application because the software application, espe-
cially fake antivirus software, will rarely make changes to its
user interface layout even though changes may be madeto file
names, contents, installed registries, install paths, interface
icons, and links to URLs. An entire product family of soft-
ware applications (or of fake antivirus software) will often
share the same look and feel.

In one embodiment, the technique generates a database of
known layouts by using samples of executable files each
having a known function, i.e., the type of software is known
beforehand. The type may be antivirus software or fake anti-
virus software. The executable file is executed within a safe
environment and its graphical user interface is identified. A
layout analysis step enumerates all of the windows within this
user interface and extracts the position of each window and
the dimensions of each window in order to extract a list of
position and dimension values for each window. The set of all
of these values for each window within the user interface
forms the layout information for this executable file. If a
layout database does not already contain this layout informa-
tion then this layout information (also termed a pattern) is
added to the layout database. A layout database may include
only layout information corresponding to software files of a
particular type, or, different types may be represented within
the database and in this case each set of layout information is
also associated with a label identifying the type.

In a second embodiment, the technique acquires a sample
of'an executable file having an unknown function (i.e., its type
is unknown). The sample may optionally be checked against
a white list first for efficiency reasons. The executable file is
executed within a safe environment and its graphical user
interface is identified. A layout analysis step enumerates all of
the windows within this user interface and extracts the posi-
tion of each window and the dimensions of each window in
order to extract a list of position and dimension values for
each window. The set of all of these values for each window
within the user interface forms the layout information for this
executable file. If the layout database contains this layout
information then it is determined that the layout information
is of the same type of software corresponding to the type of
software contained within the database (or of the type of
software to which the layout information is matched within
the database). A match may occur if all the windows match, if
only some percentage of the windows match, or if the win-

US 9,177,146 B1

3

dows do not match exactly but the dimensions of the corre-
sponding window in the database are within a certain percent-
age.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention, together with further advantages thereof,
may best be understood by reference to the following descrip-
tion taken in conjunction with the accompanying drawings in
which:

FIG. 1 illustrates a graphical user interface for a fake anti-
virus software product called “Antivirus 2009.”

FIG. 2 illustrates a graphical user interface for a fake anti-
virus software product called “Antivirus 2008.”

FIG. 3 illustrates a graphical user interface for a fake anti-
virus software product called “Anti-virus 1.”

FIG. 4 illustrates the general layout of the graphical user
interface of FIG. 1.

FIG. 5 illustrates a general layout of an example graphical
user interface.

FIG. 6 illustrates a graphical user interface for a fake anti-
virus software product called “AntiSpyware.”

FIG. 7 illustrates a graphical user interface for a fake anti-
virus software product called “MalwareRemoval.”

FIG. 8 illustrates the general layout of a graphical user
interface that represents the layouts of both of the user inter-
faces of FIGS. 6 and 7.

FIG. 9 is a flowchart describing one embodiment by which
a database of software layouts and their types are generated.

FIG. 10 shows an example of layout information (in the
form of vectors) that are being passed to a layout database
within a computer.

FIG. 11 shows layout information being stored within data-
base as a pattern.

FIG. 12 is a flowchart describing one embodiment by
which an unknown software application is analyzed in order
to classify it.

FIGS. 13A and 13B illustrate a computer system suitable
for implementing embodiments of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

Since 2008, more and more malware is using social net-
works in order to disguise fake software as a normal applica-
tion or as an antivirus application. Once a trusting user down-
loads and installs the fake software (often from a link listed on
atrusted friend’s Web log, Web page, or social network page)
they see a professional looking antivirus application with all
of the expected functions. Furthermore, the fake application
often appears to scan faster, use less system resources and
perform better since the fake application is not actually work-
ing to protect the user’s computer. Typically, the fake appli-
cation then proceeds to notify the user that their computer is
infected and asks the user to pay a fee, link to a bogus Web
site, purchase more software or an upgrade, etc. When the
user then performs a transaction the fake software (or the
bogus Web site) will steal the user’s credit card or other
confidential information via the transaction.

Fortunately, it has been realized that the layout of the
graphical user interface of particular software applications
(especially those that originate from the same product family)
is very similar. The interface layout of fake antivirus software
has been realized to be quite similar especially in the case of
fake software from the same product family.

Layout Examples

The following figures illustrate three different graphical
user interfaces for supposedly different software products,

10

15

20

30

35

40

45

65

4

but these software products are actually polymorphs of the
original fake antivirus software. Each of these software prod-
ucts has a different file name, different contents, a different
installed path, a different installed registry and process behav-
ior, even a different resource icon, and are thus difficult to
detect using traditional file scanning or behavior monitoring.

FIG. 1 illustrates a graphical user interface 100 for a fake
antivirus software product called “Antivirus 2009.”

FIG. 2 illustrates a graphical user interface 200 for a fake
antivirus software product called “Antivirus 2008.”

FIG. 3 illustrates a graphical user interface 300 for a fake
antivirus software product called “Anti-virus 1.”

Even though these three software products have different
names, different icons that have been installed differently,
their graphical user interface layouts are nearly the same. A
novel layout scanner may be used to detect the general layout
of each user interface using appropriate operating system
functions. The layout of a particular software application may
then be compared to other known layouts (or to each other) in
order to classify the software application, or in the case of
fake antivirus software, detect it, warn the user, and remove it.

FIG. 4 illustrates the general layout 400 of the graphical
user interface of FIG. 1. The outlines of windows in FIG. 4
correspond to the user interface windows of FIG. 1. For
example, regions 410-440 correspond respectively to regions
110-140 of FIG. 1. In particular, region 450 corresponds to
the “Remove” button 150. Other regions in FIG. 4 correspond
to respective locations in FIG. 1. A general layout may also be
derived for each of FIGS. 2 and 3, and each of these layouts
will be very similar to that of FIG. 4. Similar layouts may be
assumed to be of the same general type and may be classified
accordingly.

FIG. 5 illustrates a general layout 500 of an example
graphical user interface. This example illustrates what tech-
nique for comparing layouts with one another. Once the
regions of the user interface have been identified, each region
(or window) is identified by a numerical vector. For example,
region 510 is indicated by the vector 521, namely, (12, 6, 36,
18). The first two numerals of the vector indicate a starting
point for the region (i.e., its initial horizontal position and its
initial vertical position) at reference point 522, while the
second two numerals of the vector indicate its width (18) and
its height (18), shown by reference point 524. Once a vector
is obtained for each region of the layout, these vectors may be
compared against corresponding vectors for a different layout
in order to determine if the two layouts are similar. For
example, if 80% of a first layout matches substantially the
vectors of a second layout, it may be determined that the first
layout represents the same type of software represented by the
second layout. Of course, other percentages or thresholds
may also be used.

By using this technique and iterating over known software
applications and their respective layouts and vectors for each
region, a layout database may be generated for future refer-
ence. Such a layout database may then be used to compare to
an unknown software application and its general layout in
order to classify the software application and/or to detect fake
antivirus software.

Further Layout Examples

FIG. 6 illustrates a graphical user interface 600 for a fake
antivirus software product called “AntiSpyware.”

FIG. 7 illustrates a graphical user interface 700 for a fake
antivirus software product called “MalwareRemoval.”

A casual glance at both of these user interfaces reveals that
the layouts of both user interfaces appears to be the same.

US 9,177,146 B1

5

Thus, even though the file names are different, the product
names are different, the contents are slightly different, and
some of the graphical images are different, it is apparent that
the general layout of both of these user interfaces is more or
less the same.

FIG. 8 illustrates the general layout 800 of a graphical user
interface that represents the layouts of both of the user inter-
faces of FIGS. 6 and 7. As shown, FIG. 6 has regions 610-630
that correspond to regions 710-730 in FIG. 7, and regions
810-830 of FIG. 8 represents the general layout of those
regions of FIGS. 6 and 7. Thus, even though the product
names are different, the computer images are different, and
some of the numerical values are different, an analysis of both
of'the layouts of FIGS. 6 and 7 reveals that they represent the
same type of software application, namely in this example,
fake antivirus software.

Flowchart Example—Generate Layout Information

FIG. 9 is a flowchart describing one embodiment by which
a database of software layouts and their types are generated.
Inorderto analyze the layout of a user interface of a particular
software application in order to classify it as belonging to a
particular type, it can be useful to reference a database of
known layouts, that is, a database of layouts where each
layout is known to represent a particular type of software,
such as fake antivirus software. Of course, the database may
represent other classifications of software other than fake
antivirus software, and the database may also represent
numerous types of software, where each layout is tagged with
its particular classification.

In step 10 a particular known software sample is obtained;
the sample has previously been identified as being of a par-
ticular type such as fake antivirus software, real antivirus
software, fake bank software, fake commercial software (e.g.,
that asks you to input your account and password), etc. Typi-
cally, the sample is obtained through use of legitimate anti-
virus software in the normal course of detecting malware and
is most often an executable file.

In one specific embodiment of the invention, every time a
sample of fake antivirus software is obtained it is processed
via the steps of this flowchart in order to keep its representa-
tion in the layout database. In step 14 the software sample is
executed and its graphical user interface is targeted for analy-
sis. Preferably, the sample is executed within a sandbox or
other safe environment so that the sample will not adversely
affect its computing environment. A sandbox is a known
security mechanism for isolating an executing program from
the computer hardware and actual operating system in which
it executes. It is often used to execute untested code, or
untrusted programs from unverified third-parties, suppliers
and untrusted users. This safe environment is also called a
virtualization operating system in that the sample is executing
within the virtualization operating system which itself is
executing within the actual operating system of the computer.
As such, the behavior of the executing sample may be moni-
tored and it is not possible for the sample to have any adverse
effects upon the actual operating system.

The graphical user interface is next targeted once the
sample begins executing within the sandbox. It is desirable to
target the user interface so that its layout may be analyzed,
summarized and stored within the layout database. First, we
monitor the sandbox and obtain the new process identifier (for
example, “1024”) for the sample which has been created in
the sandbox. Next, we use the operating system function
“WIN32API EnumWindows” to enumerate all of the graphi-
cal user interface programs and use the function “WIN32 API

10

15

20

25

30

35

40

45

50

55

60

65

6

GetWindowThreadProcessId” to get its process identifier.
Then, we compare the newly created process identifier with
the enumeration of all of the graphical user interface program
process identifiers. If we find a process identifier that matches
with the newly created process identifier, then that process’s
window will be the one that we should target. Once targeted,
the graphical user interface may now be analyzed.

Preferably, the sample file continues executing within the
virtualization environment while the user interface is ana-
lyzed. Once we have completed the analysis of the graphical
user interface, we terminate the target process and roll back
the virtualization environment to a clean status for use with
the next sample.

In step 18 the graphical user interface is analyzed as pre-
viously described in FIGS. 4 and 5 in order to extract vectors
corresponding to the layout of each region or window within
the user interface. Of course, any of a variety of techniques
may be used to identify each window within the user interface
and to determine its location and size. In one particular
embodiment under the Microsoft operating system the API
functions “EnumWindows” and “EnumChildWindow” may
be used to enumerate all windows of a particular interface of
an application and to obtain the position and size of each
window. This position and size information may then be
stored as a vector as described above.

In one specific embodiment, the following steps may be
used to extract the layout of a specific graphical user interface.
First, we denote the target window identified above as the
“Parent window.” Next, we use this Parent window as input to
call the function “WIN32 API EnumChildWindow” in order
to enumerate all of the specific child windows ofthe graphical
user interface. We then use the functions “WIN32 API
Thread32First” and “Thread32Next” in order to enumerate
the thread that belongs to the specific GUI’s program. Finally,
we use the Thread 1D as input to call the function “WIN32
API EnumThreadWindow” in order to enumerate all of the
specific thread windows of the graphical interface. The output
of “EnumChildWindow” and “EnumThread Window” will be
the set of vectors that may be used to construct the layout of
the specific graphical user interface window. This set of vec-
tors is also termed the “pattern” for this user interface.

Of course, the set of vectors need not be arranged as spe-
cifically shown in FIG. 10. The values describing the initial
starting point of a window and its dimensions may be ordered
in any fashion, may use real numbers instead of integers, may
use a different coordinate system for specifying a window’s
location, etc. The size and location of a window may also be
identified in different ways. Because a window is a rectangle,
its size and location is typically identified by a set of vectors,
thus the Microsoft OS API “EnumChild Window” returns two
points to determine the dimensions of the window. For
example, the set {<4,8>, <12,2>} identifies a window with a
top left corner at the coordinate <4,8> and with a lower right
corner at <12,2>.

Once the vectors for windows of the user interface are
obtained, in step 22 a layout database is checked in step 22 to
ascertain whether this layout information is already present.
FIG. 10 shows an example of layout information 840 (in the
form of vectors) that are being passed 852 to a layout database
844 within a computer. Once the layout information is
received this information is compared against each set of
layout information within the database (each set representing
agraphical user interface of a software application) in order to
determine whether the incoming layout information is
already represented within the database. This comparison is
performed by determining whether the set of vectors for the
incoming layout information matches any set of vectors

US 9,177,146 B1

7

within the database. Even if some vectors representing a
particular window or windows within the layout information
do not match exactly with windows of a layout within the
database, a determination may still be made that the layout is
already present. For example, if at least a certain percentage
of'the windows of the sample are present within the database
a conclusion may still be reached that the layout is already
present.

In an alternative embodiment, windows of a sample layout
need not exactly match the windows of an existing layout in
the database in order to make the determination that the layout
is already present. The position and dimensions of windows
of'alayout may vary by as much as 10% (for example) and the
conclusion may still be reached that the layout is present. For
example, while each window of the sample may have a cor-
responding window in a particular layout in the layout data-
base, even if the vectors for each window of the sample do not
match exactly with the vectors found in the layout database, a
conclusion may be reached that the layout is still present as
long as the vectors do not vary by more than a certain per-
centage. In one particular example, a window having a vector
(10, 20, 4, 5) will still match a window in the layout database
having a vector of (11, 19, 3, 6).

Each layout represented within the layout database is also
associated with, tagged with, identified by, or otherwise
labeled with a label representing the type of software appli-
cation from which it has originated, such as “Fake Antivirus
Software,” “Real Antivirus Software,” “Banker” or “Network
Connecter”. Alternatively, if the entire layout database only
represents software of a particular type (for example, fake
antivirus software) then there is no need for each layout in the
database to be labeled. If it is determined in step 22 that the
layout database already contains this layout information than
no action is taken in the flowchart ends.

A communication 856 from the database back to the origin
of the layout information indicates whether or not the layout
information is already present within the database.

On the other hand, if it is determined that the layout data-
base does not yet contain this layout information along with a
label identifying the type of software, then in step 26 this
layout information is added to the database along with a label
identifying the type of software from which it has originated.
This layout information (the set of vectors) is also termed the
“pattern” for the particular sample from which it was
obtained.

FIG. 11 shows layout information 840 being stored within
database 844 as a pattern 860.

Once the layout information has been stored and the pat-
tern has been created the flowchart ends.

Flowchart Example—Classify Software

FIG. 12 is a flowchart describing one embodiment by
which an unknown software application is analyzed in order
to classify it. In order to classify a software application (using
the layout of its graphical user interface) as belonging to a
particular type, it can be useful to reference a database of
known layouts, that is, a database of layouts where each
layout is known to represent a particular type of software,
such as fake antivirus software, and where each layout is
labeled according to its software type. The creation of such a
layout database has been described above and the below
flowchart makes use of such an existing database.

In step 50 an unknown software sample is obtained; the
sample has not yet been classified as being of a particular
type. In step 52 the unknown sample is checked against a
white list of known legitimate samples. For example, the

10

15

20

25

30

35

40

45

50

55

60

65

8

digital signature of the unknown sample may be checked to
determine if the digital signature was created (or signed) by a
known legitimate entity. If so, it is known that the sample is
actually legitimate software (i.e., it is not fake antivirus soft-
ware) and it may be classified as legitimate software (for
example). Alternatively, a message digest may be calculated
for the unknown sample and compared against a white list of
known message digests, or other techniques of comparing an
executable file to a white list may also be used.

In step 54 the unknown software sample is executed and its
graphical user interface is targeted for analysis. Preferably,
the sample is executed within a “sandbox” or other safe
environment so that the sample will not adversely affect its
computing environment. The user interface is targeted using
the procedure described above with respect to step 14.

In step 58 the graphical user interface is analyzed as pre-
viously described in step 18 in order to extract vectors corre-
sponding to the layout of each region or window within the
user interface. Of course, any of a variety of techniques may
be used to identify each window within the user interface and
to determine its location and size. The result is a set of vectors
describing the layout of the windows of the graphical user
interface.

Once the vectors for windows of the user interface are
obtained, in step 62 the layout database is checked to ascer-
tain whether this layout information is already present. Once
the layout information is received in the database this infor-
mation is compared against each set of layout information
within the database (each set representing a graphical user
interface of a software application) in order to determine
whether the incoming layout information is already repre-
sented within the database. This comparison process has
already been described above.

In step 70 it is determined whether a match exists if a
certain percentage of the layout of the unknown sample
matches with one of the layouts in the layout database. For
example, a threshold of 80% may be used indicating that if
80% ofthe windows of the unknown layout match with win-
dows of one of the layouts in the database then the conclusion
may be reached that a match does exist and that the unknown
sample may be classified as the same type as the layout of the
database. In one embodiment, a window of the unknown
sample matches with one of the windows in a layout within
the layout database if the vectors for the two windows are the
same. [t is realized that typically with fake antivirus software,
while the names, content and icons may change often, the
position and size of the windows of the graphical user inter-
face remain exactly the same. Therefore, matches can be
determined by requiring that most or all of the windows
match exactly. In another embodiment, a window may match
another window in the layout database even if the position and
dimensions of the two windows are not exact, but vary within
a certain percentage.

If, in step 62 the unknown layout is clearly not present, or,
if in step 70 a portion of the unknown layout matches but the
match percentage is not greater than the threshold, then in
step 66 a determination is made that no classification can be
determined for the unknown layout and the flowchart ends.
On the other hand, if the match percentage is greater than the
threshold, then in step 74 a determination is reached that the
unknown sample may be classified as the same type as the
matched layout in the database. For example, if the layout of
the unknown sample matches a layout in the database which
has a type of “Fake Antivirus Software,” then the unknown
sample will also be classified as being “Fake Antivirus Soft-

US 9,177,146 B1

9

ware.” Output may be to a display screen, to a database, as
input to another computer program, to a hard printout, or in
other ways known in the art.

Once a determination has been made that no classification
can be reached or a classification is output then the flowchart
ends.

Computer System Embodiment

FIGS. 13A and 13B illustrate a computer system 900 suit-
able for implementing embodiments of the present invention.
FIG. 13 A shows one possible physical form of the computer
system. Of course, the computer system may have many
physical forms including an integrated circuit, a printed cir-
cuit board, a small handheld device (such as a mobile tele-
phone or PDA), a personal computer or a super computer.
Computer system 900 includes a monitor 902, a display 904,
a housing 906, a disk drive 908, a keyboard 910 and a mouse
912. Disk 914 is a computer-readable medium used to trans-
fer data to and from computer system 900.

FIG. 13B is an example of a block diagram for computer
system 900. Attached to system bus 920 are a wide variety of
subsystems. Processor(s) 922 (also referred to as central pro-
cessing units, or CPUs) are coupled to storage devices includ-
ing memory 924. Memory 924 includes random access
memory (RAM) and read-only memory (ROM). As is well
known in the art, ROM acts to transfer data and instructions
uni-directionally to the CPU and RAM is used typically to
transfer data and instructions in a bi-directional manner. Both
of these types of memories may include any suitable of the
computer-readable media described below. A fixed disk 926
is also coupled bi-directionally to CPU 922; it provides addi-
tional data storage capacity and may also include any of the
computer-readable media described below. Fixed disk 926
may be used to store programs, data and the like and is
typically a secondary storage medium (such as a hard disk)
that is slower than primary storage. It will be appreciated that
the information retained within fixed disk 926, may, in appro-
priate cases, be incorporated in standard fashion as virtual
memory in memory 924. Removable disk 914 may take the
form of any of the computer-readable media described below.

CPU 922 is also coupled to a variety of input/output
devices such as display 904, keyboard 910, mouse 912 and
speakers 930. In general, an input/output device may be any
of: video displays, track balls, mice, keyboards, microphones,
touch-sensitive displays, transducer card readers, magnetic or
paper tape readers, tablets, styluses, voice or handwriting
recognizers, biometrics readers, or other computers. CPU
922 optionally may be coupled to another computer or tele-
communications network using network interface 940. With
such a network interface, it is contemplated that the CPU
might receive information from the network, or might output
information to the network in the course of performing the
above-described method steps. Furthermore, method
embodiments of the present invention may execute solely
upon CPU 922 or may execute over a network such as the
Internet in conjunction with a remote CPU that shares a
portion of the processing.

In addition, embodiments of the present invention further
relate to computer storage products with a computer-readable
medium that have computer code thereon for performing
various computer-implemented operations. The media and
computer code may be those specially designed and con-
structed for the purposes of the present invention, or they may
be of the kind well known and available to those having skill
in the computer software arts. Examples of computer-read-
able media include, but are not limited to: magnetic media

20

25

40

45

10

such as hard disks, floppy disks, and magnetic tape; optical
media such as CD-ROMs and holographic devices; magneto-
optical media such as floptical disks; and hardware devices
that are specially configured to store and execute program
code, such as application-specific integrated circuits
(ASICs), programmable logic devices (PLDs) and ROM and
RAM devices. Examples of computer code include machine
code, such as produced by a compiler, and files containing
higher-level code that are executed by a computer using an
interpreter.

Although the foregoing invention has been described in
some detail for purposes of clarity of understanding, it will be
apparent that certain changes and modifications may be prac-
ticed within the scope of the appended claims. Therefore, the
described embodiments should be taken as illustrative and not
restrictive, and the invention should not be limited to the
details given herein but should be defined by the following
claims and their full scope of equivalents.

We claim:
1. A method of classifying software by a computing device,
said method comprising:

receiving an executable file within the computing device,
wherein it is unknown whether said executable file is
malware;

executing, by the computing device, said executable file
within a virtualization environment of said computing
device and creating a process identifier for said execut-
ing file;

identifying, by the computing device, a graphical user
interface program of said executable file during said
execution by comparing said process identifier of said
executing executable file with process identifiers of
graphical user interface programs that are executing
within said virtualization environment, said graphical
user interface program including a plurality of windows;

obtaining, by the computing device, position and dimen-
sion values for each of said windows from said graphical
user interface program via a function;

querying, by the computing device, a database with said
position and dimension values of said executable file to
determine whether said position and dimension values
are present within said database, wherein said database
comprises sets of position and dimension values, each of
said sets including a label indicating a type of an execut-
able file corresponding to said each of said sets;

determining, by the computing device, whether a certain
number of said position and dimension values of each of
said windows match a set of position and dimension
values within said database, wherein a match occurs if
the position and dimension values of a window of each
of said windows do not vary by more than a certain
percentage from the set of position and dimension values
within said database; and

returning, by the computing device, a result regarding a
classification of said executable file based upon said
querying of said database, said result indicating whether
said classification of said executable file is malware.

2. The method as recited in claim 1 further comprising:

determining that said position and dimension values are
not present within said database when said certain num-
ber is not greater than a threshold value; and

returning said result indicating that said classification of
said executable file is unknown.

3. The method as recited in claim 1 further comprising:

determining that said position and dimension values are
present within said database when said certain number is

US 9,177,146 B1

11

greater than a threshold value, said sets of position and
dimension values being associated with a known type of
malware; and

returning said result indicating that said classification of

said executable file is said known type of malware.

4. The method as recited in claim 1 wherein said database
includes other position and dimension values associated with
fake antivirus software.

5. The method as recited in claim 1 wherein said position
and dimension values for each of said windows identifies a
region within said graphical user interface.

6. The method as recited in claim 1 wherein said position
and dimension values for each of said windows is represented
as a numerical vector.

7. The method of claim 1 wherein the dimension values for
at least one of said windows is not visible in a display of said
graphical user interface program on said computing device.

8. A method as recited in claim 1 further comprising:

checking said executable file against a white list in order to

determine whether said executable file is legitimate soft-
ware or not.
9. A non-transitory computer-readable storage device with
instructions stored thereon for implementing a method of
classifying software that, when executed by one or more
computer processors, cause the one or more computer pro-
cessors to perform operations comprising:
receiving an executable file within a computer, wherein it is
unknown whether said executable file is malware;

executing said executable file within a virtualization envi-
ronment of said computer and creating a process identi-
fier for said executing file;

identifying a graphical user interface program of said

executable file during said execution by comparing said

10

15

20

30

12

process identifier of said executing executable file with
process identifiers of graphical user interface programs
that are executing within said virtualization environ-
ment, said graphical user interface program including a
plurality of windows;

obtaining position and dimension values for each of said
windows from said graphical user interface program via
a function;

querying a database with said position and dimension val-
ues of said executable file to determine whether said
position and dimension values are present within said
database, wherein said database comprises sets of posi-
tion and dimension values, each of said sets including a
label indicating a type of an executable file correspond-
ing to said each of said sets;

determining whether a certain number of said position and
dimension values of each of said windows match a set of
position and dimension values within said database,
wherein a match occurs if the position and dimension
values of a window of each of said windows do not vary
by more than a certain percentage from the set of posi-
tion and dimension values within said database; and

returning, by the computing device, a result regarding a
classification of said executable file based upon said
querying of said database, said result indicating whether
said classification of said executable file is malware.

10. A non-transitory computer-readable storage device

recited in claim 9 further comprising instructions for:

checking said executable file against a white list in order to
determine whether said executable file is legitimate soft-
ware or not.

